Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612834

RESUMO

The animal gut microbiota, comprising a diverse array of microorganisms, plays a pivotal role in shaping host health and physiology. This review explores the intricate dynamics of the gut microbiome in animals, focusing on its composition, function, and impact on host-microbe interactions. The composition of the intestinal microbiota in animals is influenced by the host ecology, including factors such as temperature, pH, oxygen levels, and nutrient availability, as well as genetic makeup, diet, habitat, stressors, and husbandry practices. Dysbiosis can lead to various gastrointestinal and immune-related issues in animals, impacting overall health and productivity. Extracellular vesicles (EVs), particularly exosomes derived from gut microbiota, play a crucial role in intercellular communication, influencing host health by transporting bioactive molecules across barriers like the intestinal and brain barriers. Dysregulation of the gut-brain axis has implications for various disorders in animals, highlighting the potential role of microbiota-derived EVs in disease progression. Therapeutic approaches to modulate gut microbiota, such as probiotics, prebiotics, microbial transplants, and phage therapy, offer promising strategies for enhancing animal health and performance. Studies investigating the effects of phage therapy on gut microbiota composition have shown promising results, with potential implications for improving animal health and food safety in poultry production systems. Understanding the complex interactions between host ecology, gut microbiota, and EVs provides valuable insights into the mechanisms underlying host-microbe interactions and their impact on animal health and productivity. Further research in this field is essential for developing effective therapeutic interventions and management strategies to promote gut health and overall well-being in animals.


Assuntos
Exossomos , Vesículas Extracelulares , Microbioma Gastrointestinal , Microbiota , Animais , Eixo Encéfalo-Intestino
2.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542054

RESUMO

This paper sheds light on the alarming issue of antibiotic resistance (ABR) in aquatic environments, exploring its detrimental effects on ecosystems and public health. It examines the multifaceted role of antibiotic use in aquaculture, agricultural runoff, and industrial waste in fostering the development and dissemination of resistant bacteria. The intricate interplay between various environmental factors, horizontal gene transfer, and bacterial extracellular vesicles (BEVs) in accelerating the spread of ABR is comprehensively discussed. Various BEVs carrying resistance genes like blaCTX-M, tetA, floR, and sul/I, as well as their contribution to the dominance of multidrug-resistant bacteria, are highlighted. The potential of BEVs as both a threat and a tool in combating ABR is explored, with promising strategies like targeted antimicrobial delivery systems and probiotic-derived EVs holding significant promise. This paper underscores the urgency of understanding the intricate interplay between BEVs and ABR in aquatic environments. By unraveling these unseen weapons, we pave the way for developing effective strategies to mitigate the spread of ABR, advocating for a multidisciplinary approach that includes stringent regulations, enhanced wastewater treatment, and the adoption of sustainable practices in aquaculture.


Assuntos
Ecossistema , Vesículas Extracelulares , Bactérias/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Genes Bacterianos
3.
Biology (Basel) ; 12(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37626970

RESUMO

Human platelet lysate (hPL) has high levels of fibrinogen and coagulation factors, which can lead to gel and precipitate formation during storage and cell culture. Heparin derived from animals is commonly added to minimize these risks, but cannot completely eliminate them. Thus, this study proposes an alternative method to prepare fibrinogen-depleted hPL (Fd-hPL) that supports heparin-free expansion of mesenchymal stem cells (MSCs). hPL was added to heparin to prepare heparin-hPL (H-hPL), whilst Fd-hPL was prepared by adding calcium salt to hPL to remove the fibrin clot. The concentrations of calcium, fibrinogen, and growth factors in H-hPL and Fd-hPL were compared. The effects of H-hPL and Fd-hPL on umbilical cord-derived MSCs (UC-MSCs) were assessed. The results showed that Fd-hPL possessed a significantly higher calcium concentration and a lower fibrinogen level than H-hPL. The concentrations of BDNF, TGF-ß1, and PDGF-BB showed no significant difference between H-hPL and Fd-hPL, but Fd-hPL had a lower VEGF concentration. Fd-hPL retained the characteristics of UC-MSCs, as it did not affect the cell viability, proliferation, multilineage differentiation potential, or surface marker expression. In conclusion, Fd-hPL effectively supported the in vitro expansion of MSCs without compromising their characteristics, positioning it as a potential substitute for FBS in MSC culture.

4.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511090

RESUMO

MicroRNAs are short, single-stranded ribonucleic acids expressed endogenously in the body to regulate gene expression at the post-translational level, with exogenous microRNA offering an attractive approach to therapy. Among the myriad microRNA candidates involved in controlling bone homeostasis and remodeling, microRNA 21 (miR21) is the most abundant. This paper discusses the studies conducted on the role and mechanism of human miR21 (hsa-miR21) in the regulation of bones and the various pathways mediated by miR21, and explores the feasibility of employing exogenous miR21 as a strategy for promoting osteogenesis. From the literature review, it was clear that miR21 plays a dual role in bone metabolism by regulating both bone formation and bone resorption. There is substantial evidence to date from both in vitro and in vivo studies that exogenous miR21 can successfully accelerate new bone synthesis in the context of bone loss due to injury or osteoporosis. This supports the exploration of applications of exogenous miR21 in bone regenerative therapy in the future.


Assuntos
Reabsorção Óssea , MicroRNAs , Osteogênese , Humanos , Osso e Ossos/metabolismo , Reabsorção Óssea/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética
5.
CRISPR J ; 6(3): 196-215, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37219623

RESUMO

Stem cells such as induced pluripotent stem cells, embryonic stem cells, and hematopoietic stem and progenitor cells are growing in importance in disease modeling and regenerative medicine. The applications of CRISPR-based gene editing to create a mélange of disease and nondisease stem cell lines have further enhanced the utility of this innately versatile group of cells in the studies of human genetic disorders. Precise base edits can be achieved using a variety of CRISPR-centric approaches, particularly homology-directed repair and the recently developed base editors and prime editors. Despite its much-touted potential, editing single DNA bases is technically challenging. In this review, we discuss the strategies for achieving exact base edits in the creation of various stem cell-based models for use in elucidating disease mechanisms and assessing drug efficacy, and the unique characteristics of stem cells that warrant special considerations.


Assuntos
Edição de Genes , Células-Tronco Pluripotentes Induzidas , Humanos , Sistemas CRISPR-Cas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Linhagem Celular , Células-Tronco Embrionárias/metabolismo
6.
Gels ; 9(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37102955

RESUMO

The rapid healing of oral ulcers is important to prevent secondary infection, especially for chronic oral ulcers. Platelet lysate (PL) is rich in growth factors for cell growth and promotes tissue regeneration. Hence, this study was performed to compare the effects of PL originating from umbilical cord blood (CB) and peripheral blood (PB) on oral mucosal wound healing. The PLs were molded into gel form in the culture insert with the addition of calcium chloride and conditioned medium for sustained release of growth factors. The CB-PL and PB-PL gels were found to degrade slowly in culture and their degradation percentages by weight were 5.28 ± 0.72% and 9.55 ± 1.82% respectively. The results from the scratch assay and Alamar blue assay showed that the CB-PL and PB-PL gels increased the proliferation (148 ± 3% and 149 ± 3%) and wound closure (94.17 ± 1.77% and 92.75 ± 1.80%) of oral mucosal fibroblasts compared to the control with no statistical differences between the two gels, respectively. Quantitative RT-PCR showed that mRNA expressions of collagen-I, collagen-III, fibronectin, and elastin genes in cells treated with CB-PL (11-, 7-, 2-, and 7-fold) and PB-PL (17-, 14-, 3-, and 7-fold) decreased compared with the control, respectively. The concentration of platelet-derived growth factor of PB-PL gel (1303.10 ± 343.96 pg/mL) showed a higher trend than CB-PL gel did (905.48 ± 69.65 pg/mL) from ELISA measurement. In summary, CB-PL gel is as effective as PB-PL gel in supporting oral mucosal wound healing, making it a potential new source of PL for regenerative treatment.

7.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982842

RESUMO

Cord blood-platelet lysate (CB-PL), containing growth factors such as a platelet-derived growth factor, has a similar efficacy to peripheral blood-platelet lysate (PB-PL) in initiating cell growth and differentiation, which makes it a unique alternative to be implemented into oral ulceration healing. This research study aimed to compare the effectiveness of CB-PL and PB-PL in promoting oral wound closure in vitro. Alamar blue assay was used to determine the optimal concentration of CB-PL and PB-PL in enhancing the proliferation of human oral mucosal fibroblasts (HOMF). The percentage of wound closure was measured using the wound-healing assay for CB-PL and PB-PL at the optimal concentration of 1.25% and 0.3125%, respectively. The gene expressions of cell phenotypic makers (Col. I, Col. III, elastin and fibronectin) were determined via qRT-PCR. The concentrations of PDGF-BB were quantified using ELISA. We found that CB-PL was as effective as PB-PL in promoting wound-healing and both PL were more effective compared to the control (CTRL) group in accelerating the cell migration in the wound-healing assay. The gene expressions of Col. III and fibronectin were significantly higher in PB-PL compared to CB-PL. The PDGF-BB concentration of PB-PL was the highest and it decreased after the wound closed on day 3. Therefore, we concluded that PL from both sources can be a beneficial treatment for wound-healing, but PB-PL showed the most promising wound-healing properties in this study.


Assuntos
Sangue Fetal , Fibronectinas , Humanos , Becaplermina/metabolismo , Fibronectinas/metabolismo , Proliferação de Células , Plaquetas/metabolismo , Fibroblastos
8.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835154

RESUMO

Xeno-free three-dimensional cultures are gaining attention for mesenchymal stem cell (MSCs) expansion in clinical applications. We investigated the potential of xeno-free serum alternatives, human serum and human platelet lysate, to replace the current conventional use of foetal bovine serum for subsequent MSCs microcarrier cultures. In this study, Wharton's Jelly MSCs were cultured in nine different media combinations to identify the best xeno-free culture media for MSCs culture. Cell proliferation and viability were identified, and the cultured MSCs were characterised in accordance with the minimal criteria for defining multipotent mesenchymal stromal cells by the International Society for Cellular Therapy (ISCT). The selected culture media was then used in the microcarrier culture of MSCs to determine the potential of a three-dimensional culture system in the expansion of MSCs for future clinical applications, and to identify the immunomodulatory potential of cultured MSCs. Low Glucose DMEM (LG) + Human Platelet (HPL) lysate media appeared to be good candidates for replacing conventional MSCs culture media in our monolayer culture system. MSCs cultured in LG-HPL achieved high cell yield, with characteristics that remained as described by ISCT, although the overall mitochondrial activity of the cells was lower than the control and the subsequent effects remained unknown. MSC microcarrier culture, on the other hand, showed comparable cell characteristics with monolayer culture, yet had stagnated cell proliferation, which is potentially due to the inactivation of FAK. Nonetheless, both the MSCs monolayer culture and the microcarrier culture showed high suppressive activity on TNF-α, and only the MSC microcarrier culture has a better suppression of IL-1 secretion. In conclusion, LG-HPL was identified as a good xeno-free media for WJMSCs culture, and although further mechanistic research is needed, the results show that the xeno-free three-dimensional culture maintained MSC characteristics and improved immunomodulatory activities, suggesting the potential of translating the monolayer culture into this culture system in MSC expansion for future clinical application.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Células-Tronco Mesenquimais , Geleia de Wharton , Humanos , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Meios de Cultura , Geleia de Wharton/citologia , Geleia de Wharton/metabolismo , Técnicas de Cultura de Células em Três Dimensões/métodos
9.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835438

RESUMO

Cancer is the second leading contributor to global deaths caused by non-communicable diseases. The cancer cells are known to interact with the surrounding non-cancerous cells, including the immune cells and stromal cells, within the tumor microenvironment (TME) to modulate the tumor progression, metastasis and resistance. Currently, chemotherapy and radiotherapy are the standard treatments for cancers. However, these treatments cause a significant number of side effects, as they damage both the cancer cells and the actively dividing normal cells indiscriminately. Hence, a new generation of immunotherapy using natural killer (NK) cells, cytotoxic CD8+ T-lymphocytes or macrophages was developed to achieve tumor-specific targeting and circumvent the adverse effects. However, the progression of cell-based immunotherapy is hindered by the combined action of TME and TD-EVs, which render the cancer cells less immunogenic. Recently, there has been an increase in interest in using immune cell derivatives to treat cancers. One of the highly potential immune cell derivatives is the NK cell-derived EVs (NK-EVs). As an acellular product, NK-EVs are resistant to the influence of TME and TD-EVs, and can be designed for "off-the-shelf" use. In this systematic review, we examine the safety and efficacy of NK-EVs to treat various cancers in vitro and in vivo.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/terapia , Células Matadoras Naturais , Linfócitos T , Imunoterapia , Microambiente Tumoral
10.
Nutrients ; 14(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296960

RESUMO

Previous studies have demonstrated the anticancer activities of tocotrienol on several types of cancer, but its effects on chondrosarcoma have never been investigated. Therefore, this study aims to determine the anticancer properties of annatto tocotrienol (AnTT), γ-tocotrienol (γ-T3) and δ-tocotrienol (δ-T3) on human chondrosarcoma SW1353 cells. Firstly, the MTT assay was performed to determine the half-maximal inhibitory concentration (IC50) of tocotrienol on SW1353 cells after 24 h treatment. The mode of cell death, cell cycle analysis and microscopic observation of tocotrienol-treated SW1353 cells were then conducted according to the respective IC50 values. Subsequently, RNAs were isolated from tocotrienol-treated cells and subjected to RNA sequencing and transcriptomic analysis. Differentially expressed genes were identified and then verified with a quantitative PCR. The current study demonstrated that AnTT, γ-T3 and δ-T3 induced G1 arrest on SW1353 cells in the early phase of treatment (24 h) which progressed to apoptosis upon 48 h of treatment. Furthermore, tocotrienol-treated SW1353 cells also demonstrated large cytoplasmic vacuolation. The subsequent transcriptomic analysis revealed upregulated signalling pathways in endoplasmic reticulum stress, unfolded protein response, autophagy and transcription upon tocotrienol treatment. In addition, several cell proliferation and cancer-related pathways, such as Hippo signalling pathway and Wnt signalling pathway were also significantly downregulated upon treatment. In conclusion, AnTT, γ-T3 and δ-T3 possess promising anticancer properties against chondrosarcoma cells and further study is required to confirm their effectiveness as adjuvant therapy for chondrosarcoma.


Assuntos
Condrossarcoma , Tocotrienóis , Humanos , Tocotrienóis/farmacologia , Transcriptoma , Linhagem Celular Tumoral , Vitamina E/farmacologia , Apoptose , Proliferação de Células , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética
11.
Theranostics ; 12(15): 6455-6508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185607

RESUMO

Small extracellular vesicles (sEVs) have been proposed as a possible solution to the current lack of therapeutic interventions for endogenous skin regeneration. We conducted a systematic review of the available evidence to assess sEV therapeutic efficacy and safety in wound healing and skin regeneration in animal models. 68 studies were identified in Web of Science, Scopus, and PubMed that satisfied a set of prespecified inclusion criteria. We critically analyzed the quality of studies that satisfied our inclusion criteria, with an emphasis on methodology, reporting, and adherence to relevant guidelines (including MISEV2018 and ISCT criteria). Overall, our systematic review and meta-analysis indicated that sEV interventions promoted skin regeneration in diabetic and non-diabetic animal models and influenced various facets of the healing process regardless of cell source, production protocol and disease model. The EV source, isolation methods, dosing regimen, and wound size varied among the studies. Modification of sEVs was achieved mainly by manipulating source cells via preconditioning, nanoparticle loading, genetic manipulation, and biomaterial incorporation to enhance sEV therapeutic potential. Evaluation of potential adverse effects received only minimal attention, although none of the studies reported harmful events. Risk of bias as assessed by the SYRCLE's ROB tool was uncertain for most studies due to insufficient reporting, and adherence to guidelines was limited. In summary, sEV therapy has enormous potential for wound healing and skin regeneration. However, reproducibility and comprehensive evaluation of evidence are challenged by a general lack of transparency in reporting and adherence to guidelines. Methodological rigor, standardization, and risk analysis at all stages of research are needed to promote translation to clinical practice.


Assuntos
Vesículas Extracelulares , Cicatrização , Animais , Materiais Biocompatíveis , Reprodutibilidade dos Testes , Pele
12.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887332

RESUMO

Extracellular vesicles (EVs) are minute vesicles with lipid bilayer membranes. EVs are secreted by cells for intercellular communication. Recently, EVs have received much attention, as they are rich in biological components such as nucleic acids, lipids, and proteins that play essential roles in tissue regeneration and disease modification. In addition, EVs can be developed as vaccines against cancer and infectious diseases, as the vesicle membrane has an abundance of antigenic determinants and virulent factors. EVs for therapeutic applications are typically collected from conditioned media of cultured cells. However, the number of EVs secreted by the cells is limited. Thus, it is critical to devise new strategies for the large-scale production of EVs. Here, we discussed the strategies utilized by researchers for the scalable production of EVs. Techniques such as bioreactors, mechanical stimulation, electrical stimulation, thermal stimulation, magnetic field stimulation, topographic clue, hypoxia, serum deprivation, pH modification, exposure to small molecules, exposure to nanoparticles, increasing the intracellular calcium concentration, and genetic modification have been used to improve the secretion of EVs by cultured cells. In addition, nitrogen cavitation, porous membrane extrusion, and sonication have been utilized to prepare EV-mimetic nanovesicles that share many characteristics with naturally secreted EVs. Apart from inducing EV production, these upscaling interventions have also been reported to modify the EVs' cargo and thus their functionality and therapeutic potential. In summary, it is imperative to identify a reliable upscaling technique that can produce large quantities of EVs consistently. Ideally, the produced EVs should also possess cargo with improved therapeutic potential.


Assuntos
Vesículas Extracelulares , Reatores Biológicos , Linhagem Celular , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Vesículas Extracelulares/metabolismo
13.
J Vis Exp ; (184)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35816005

RESUMO

The ultracentrifugation-based process is considered the common method for small extracellular vesicles (sEVs) isolation. However, the yield from this isolation method is relatively lower, and these methods are inefficient in separating sEV subtypes. This study demonstrates a simple benchtop filtration method to isolate human umbilical cord-derived MSC small extracellular vesicles (hUC-MSC-sEVs), successfully separated by ultrafiltration from the conditioned medium of hUC-MSCs. The size distribution, protein concentration, exosomal markers (CD9, CD81, TSG101), and morphology of the isolated hUC-MSC-sEVs were characterized with nanoparticle tracking analysis, BCA protein assay, western blot, and transmission electron microscope, respectively. The isolated hUC-MSC-sEVs' size was 30-200 nm, with a particle concentration of 7.75 × 1010 particles/mL and a protein concentration of 80 µg/mL. Positive bands for exosomal markers CD9, CD81, and TSG101 were observed. This study showed that hUC-MSC-sEVs were successfully isolated from hUC-MSCs conditioned medium, and characterization showed that the isolated product fulfilled the criteria mentioned by Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV 2018).


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Meios de Cultivo Condicionados/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Ultracentrifugação , Cordão Umbilical
14.
Stem Cells Transl Med ; 11(8): 814-827, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35851922

RESUMO

Mesenchymal stromal cells (MSC) have excellent clinical potential and numerous properties that ease its clinical translation. Mitochondria play a crucial role in energy metabolism, essential for cellular activities, such as proliferation, differentiation, and migration. However, mitochondrial dysfunction can occur due to diseases and pathological conditions. Research on mitochondrial transfer from MSCs to recipient cells has gained prominence. Numerous studies have demonstrated that mitochondrial transfer led to increased adenosine triphosphate (ATP) production, recovered mitochondrial bioenergetics, and rescued injured cells from apoptosis. However, the complex mechanisms that lead to mitochondrial transfer from healthy MSCs to damaged cells remain under investigation, and the factors contributing to mitochondrial bioenergetics recovery in recipient cells remain largely ambiguous. Therefore, this review demonstrates an overview of recent findings in preclinical studies reporting MSC mitochondrial transfer, comprised of information on cell sources, recipient cells, dosage, route of administration, mechanism of transfer, pathological conditions, and therapeutic effects. Further to the above, this research discusses the potential challenges of this therapy in its clinical settings and suggestions to overcome its challenges.


Assuntos
Células-Tronco Mesenquimais , Medicina Regenerativa , Apoptose , Diferenciação Celular , Mitocôndrias/metabolismo
15.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743181

RESUMO

Facial aesthetics involve the application of non-invasive or minimally invasive techniques to improve facial appearance. Currently, extracellular vesicles (EVs) are attracting much interest as nanocarriers in facial aesthetics due to their lipid bilayer membrane, nanosized dimensions, biological origin, intercellular communication ability, and capability to modulate the molecular activities of recipient cells that play important roles in skin rejuvenation. Therefore, EVs have been suggested to have therapeutic potential in improving skin conditions, and these highlighted the potential to develop EV-based cosmetic products. This review summarizes EVs' latest research, reporting applications in facial aesthetics, including scar removal, facial rejuvenation, anti-aging, and anti-pigmentation. This review also discussed the advanced delivery strategy of EVs, the therapeutic potential of plant EVs, and clinical studies using EVs to improve skin conditions. In summary, EV therapy reduces scarring, rejuvenates aging skin, and reduces pigmentation. These observations warrant the development of EV-based cosmetic products. However, more efforts are needed to establish a large-scale EV production platform that can consistently produce functional EVs and understand EVs' underlying mechanism of action to improve their efficacy.


Assuntos
Vesículas Extracelulares , Comunicação Celular , Estética
16.
Regen Ther ; 19: 158-165, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35252487

RESUMO

Intravenous (IV) infusion of mesenchymal stem cells (MSCs) from nascent tissues like Wharton's Jelly of the umbilical cord is reported to offer therapeutic effects against chronic diseases. However, toxicological data essential for the clinical application of these cells are limited. Thus, this study aimed to determine the safety of IV infusion of Wharton's Jelly derived MSCs (WJ-MSCs) in rats. Fifteen male Sprague-Dawley rats were randomised into the control or treatment group. Each group received an equal volume of saline or WJ-MSC (10 × 106 cell/kg) respectively. The animals were evaluated for physical, biochemical and haematological changes at Week 0, 2, 4, 8 and 12 during the 12-week study. Acute toxicity was performed during Week 2 and sub-chronic toxicity during Week 12. At the end of the study, the relative weight of organs was calculated and histology was performed for lung, liver, spleen and kidney. The findings from physical, serum biochemistry and complete blood count demonstrated no statistically significant differences between groups. However, pathological evaluation reported minor inflammation in the lungs for all groups, but visible healing and resolution of inflammation were observed in the treatment group only. Additionally, the histological images of the treatment group had significantly improved pulmonary structures compared to the control group. In summary, the IV administration of WJ-MSC was safe in the rats. Further studies are needed to determine the long-term safety of the WJ-MSC in both healthy and diseased animal models.

17.
Burns ; 48(5): 1198-1208, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34893370

RESUMO

Skin substitutes are designed dressings intended to promote wound closure. In previous in vitro and in vivo studies on small animal, an acellular skin patch made of collagen hydrogel with dermal fibroblast conditioned medium (Col-DFCM), a collagen sponge scaffold with freshly harvested skin cells (OTC), and a platelet-rich-plasma gel with freshly harvested skin cells (PRP) have been developed and tested for immediate treatment of full-thickness wound. However, to determine the safety and efficacy of these skin patches for clinical applications, further study in a large animal model is needed. The aim of this study is to evaluate the potential of Col-DFCM, OTC and PRP in treating full-thickness wound in an ovine model via histological analysis and immunohistochemistry staining were performed, with the untreated (NT) group serving as the control. Gross examination was conducted on day 7, 14 and 21 to determine the wound closure rate. The findings of percentage of wound size reduction showed that the wound healed fastest in the presence of Col-DFCM (91.34 ± 23.35%) followed by OTC (84.49 ± 23.13%), PRP (77.73 ± 20.9%) and NT group (73.94 ± 23.71%). Histological evaluation with Hematoxylin & Eosin (H & E) and Masson's trichrome staining was used to study the structure of the wound area. The results showed that OTC treated wound was more mature as indicated by the presence of a thinner epidermis followed by the Col-DFCM, PRP and NT group. Immunohistochemistry analysis also confirmed the integrity and maturity of the regenerated skin, with positive expression of cytokeratin 10 (CK10) and involucrin in the epidermal layer. In conclusion, Col-DFCM, OTC and PRP treatments promote healing of full-thickness wound and have the potential to be used clinically for rapid treatment of full-thickness wound.


Assuntos
Queimaduras , Pele Artificial , Animais , Queimaduras/patologia , Colágeno/metabolismo , Ovinos , Pele/patologia , Cicatrização
18.
Am J Transl Res ; 13(11): 12217-12227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956448

RESUMO

Recent explorations on mesenchymal stem/stromal cells (MSC) have reported a promising future for cell-based therapies. MSCs are widely sourced from various tissues and express unique properties of regenerative potential and immunomodulation. Currently, there is a growing interest in utilizing MSC for treatment of chronic diseases to overcome the drawbacks of chemical drugs. Metabolic Syndrome (MetS) is described as a cluster of metabolic abnormalities categorized as abdominal obesity, dyslipidaemia, hypertension, hypertriglyceridemia, and hyperglycaemia. Patients diagnosed with MetS have a high predisposition for developing cardiovascular complications, diabetes, non-alcoholic fatty liver diseases, bone loss, cancer, and mortality. Hence, research on MSC as therapy for MetS and related diseases, is greatly valued and are advantaged by the low immunogenicity with high regenerative capacity. However, there are many obstacles to be addressed such as the safety, efficacy, and consistency of different MSC sources. Additionally, factors such as effective dose level and delivery method are equally important to achieve uniform therapeutic outcomes. This systematic review discusses the potential roles of MSC in managing the multiple clusters of MetS. Research articles during the past 20 years were systematically searched and filtered to update the progress in the field of MSC therapy in managing various components of MetS. The different sources of MSC, dosage, method of delivery and outcome measures for the stem cell therapies were compiled from the systematically selected research articles. It can be concluded from the review of the selected articles that MSCs can improve the various disorders of MetS such as abdominal obesity, hyperglycaemia, hypertriglyceridemia and hypertension, and represent a promising alternative to conventional therapy of the MetS cluster.

19.
Polymers (Basel) ; 13(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960943

RESUMO

The clinical use of platelet lysate (PL) in the treatment of wounds is limited by its rapid degradation by proteases at the tissue site. This research aims to develop a chitosan (CS) and kenaf nanocrystalline cellulose (NCC) hydrogel composite, which intend to stabilize PL and control its release onto the wound site for prolonged action. NCC was synthesized from raw kenaf bast fibers and incorporated into the CS hydrogel. The physicochemical properties, in vitro cytocompatibility, cell proliferation, wound scratch assay, PL release, and CS stabilizing effect of the hydrogel composites were analyzed. The study of swelling ratio (>1000%) and moisture loss (60-90%) showed the excellent water retention capacity of the CS-NCC-PL hydrogels as compared with the commercial product. In vitro release PL study (flux = 0.165 mg/cm2/h) indicated that NCC act as a nanofiller and provided the sustained release of PL compared with the CS hydrogel alone. The CS also showed the protective effect of growth factor (GF) present in PL, thereby promoting fast wound healing via the formulation. The CS-NCC hydrogels also augmented fibroblast proliferation in vitro and enhanced wound closures over 72 h. This study provides a new insight on CS with renewable source kenaf NCC as a nanofiller as a potential autologous PL wound therapy.

20.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34832875

RESUMO

Exosomes are the small extracellular vesicles secreted by cells for intercellular communication. Exosomes are rich in therapeutic cargos such as microRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids. Recently, many studies have focused on miRNAs as a promising therapeutic factor to support cartilage regeneration. Exosomes are known to contain a substantial amount of a variety of miRNAs. miRNAs regulate the post-transcriptional gene expression by base-pairing with the target messenger RNA (mRNA), leading to gene silencing. Several exosomal miRNAs have been found to play a role in cartilage regeneration by promoting chondrocyte proliferation and matrix secretion, reducing scar tissue formation, and subsiding inflammation. The exosomal miRNA cargo can be modulated using techniques such as cell transfection and priming as well as post-secretion modifications to upregulate specific miRNAs to enhance the therapeutic effect. Exosomes are delivered to the joints through direct injection or via encapsulation within a scaffold for sustained release. To date, exosome therapy for cartilage injuries has yet to be optimized as the ideal cell source for exosomes, and the dose and method of delivery have yet to be identified. More importantly, a deeper understanding of the role of exosomal miRNAs in cartilage repair is paramount for the development of more effective exosome therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...